Circuit-breaker, 4p, 200A Part no. NZMB2-4-A200 Article no. 265852 Similar to illustration | Delivery program | | | | |---|--------------------------|-----|---| | Product range | | | Circuit-breaker | | Protective function | | | System and cable protection | | tandard/Approval | | | IEC | | nstallation type | | | Fixed | | Release system | | | Thermomagnetic release | | Construction size | | | NZM2 | | Description | | | Set value in neutral conductor is synchronous with set value Ir of main pole. | | Number of poles | | | 4 pole | | Standard equipment | | | Screw connection | | Switching capacity | | | | | 400/415 V 50 Hz | I _{cu} | kA | 25 | | Rated current = rated uninterrupted current | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 200 | | Neutral conductor | % of phase conductor | CSA | 100 | | Setting range | | | | | Overload trip | | | | | 中 | l _r | Α | 160 - 200 | | Main pole | I _r | A | 160 - 200 | | Short-circuit releases | | | | | Non-delayed I | $I_i = I_n \times \dots$ | | 6 - 10 | | Short-circuit releases | I _{rm} | А | 1200 - 2000 | #### **Technical data** General | Protection against direct contact Climatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30 Ambient temperature Ambient temperature, storage CC - 40 - + 70 Operation Operation Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 g 20 (half-sinusoidal shock 20 ms) | General | | | |--|---|------|--| | Climatic proofing Damp heat, constant, to IEC 60068-2-78 Damp heat, cyclic, to IEC 60068-2-30 Ambient temperature Ambient temperature, storage °C - 40 - + 70 Operation °C - 25 - +70 Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 Safe isolation to EN 61140 Between auxiliary contacts and main contacts V AC 500 | Standards | | IEC/EN 60947 | | Ambient temperature Ambient temperature, storage Operation Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 Safe isolation to EN 61140 Between auxiliary contacts and main contacts Damp heat, cyclic, to IEC 60068-2-30 - 40 - + 70 - 25 - +70 20 (half-sinusoidal shock 20 ms) V AC 500 | Protection against direct contact | | Finger and back of hand proof to VDE 0106 Part 100 | | Ambient temperature, storage °C - 40 - + 70 Operation °C - 25 - + 70 Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 Safe isolation to EN 61140 Between auxiliary contacts and main contacts °C - 40 - + 70 20 (half-sinusoidal shock 20 ms) V AC 500 | Climatic proofing | | | | Operation C -25 - +70 Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 Safe isolation to EN 61140 Between auxiliary contacts and main contacts C -25 - +70 20 (half-sinusoidal shock 20 ms) V AC 500 | Ambient temperature | | | | Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC g 20 (half-sinusoidal shock 20 ms) Safe isolation to EN 61140 Between auxiliary contacts and main contacts V AC 500 | Ambient temperature, storage | °C | - 40 - + 70 | | 60068-2-27 Safe isolation to EN 61140 Between auxiliary contacts and main contacts V AC 500 | Operation | °C | -25 - +70 | | Between auxiliary contacts and main contacts V AC 500 | Mechanical shock resistance (10 ms half-sinusoidal shock) according to IEC 60068-2-27 | g | 20 (half-sinusoidal shock 20 ms) | | | Safe isolation to EN 61140 | | | | between the auxiliary contacts V AC 300 | Between auxiliary contacts and main contacts | V AC | 500 | | | between the auxiliary contacts | V AC | 300 | | Weight | | kg | 3.5 | |---|------------------|------|--| | Mounting position | | | Vertical and 90° in all directions With residual-current release XFI: - NZM1, N1, NZM2, N2: vertical and 90° in all directions with plug-in adapter elements - NZM1, N1, NZM2, N2: vertical, 90° right/left with withdrawable unit: - NZM3, N3: vertical, 90° left - NZM4, N4: vertical with remote operator: - NZM2, N(S)2, NZM3, N(S)3, NZM4, N(S)4: vertical and 90° in all directions | | Direction of incoming supply | | | as required | | Degree of protection | | | | | Device | | | In the operating controls area: IP20 (basic degree of protection) | | Enclosures | | | With insulating surround: IP40 With door coupling rotary handle: IP66 | | Terminations | | | Tunnel terminal: IP10 Phase isolator and strip terminal: IP00 | | Other technical data (sheet catalogue) | | | Weight Temperature dependency, Derating Effective power loss | | Circuit-breakers | | | | | Rated current = rated uninterrupted current | $I_n = I_u$ | Α | 200 | | Rated surge voltage invariability | U _{imp} | | | | Main contacts | | V | 8000 | | Auxiliary contacts | | V | 6000 | | Rated operational voltage | U _e | V AC | 440 | | Overvoltage category/pollution degree | | | 111/3 | | Rated insulation voltage | Ui | V | 690 | | Use in unearthed supply systems | | V | ≦ ₄₄₀ | | Switching capacity | | | | | Rated short-circuit making capacity | I _{cm} | | | | 240 V | I _{cm} | kA | 63 | | 400/415 V | I _{cm} | kA | 53 | | 440 V 50/60 Hz | I _{cm} | kA | 53 | | Rated short-circuit breaking capacity I _{cn} | I _{cn} | | | | Icu to IEC/EN 60947 test cycle 0-t-C0 | lcu | kA | | | 240 V 50/60 Hz | I _{cu} | kA | 30 | | 400/415 V 50/60 Hz | I _{cu} | kA | 25 | | 440 V 50/60 Hz | I _{cu} | kA | 25 | | Ics to IEC/EN 60947 test cycle 0-t-C0-t-C0 | Ics | kA | | | 240 V 50/60 Hz | I _{cs} | kA | 30 | | 400/415 V 50/60 Hz | I _{cs} | kA | 25 | | 440 V 50/60 Hz | I _{cs} | kA | 18.5 | | Utilization category to IEC/EN 60947-2 | | | Maximum back-up fuse, if the expected short-circuit currents at the installation location exceed the switching capacity of the circuit-breaker. A | | Rated making and breaking capacity | | | ·· | | Rated operational current | l _e | Α | | | AC-1 | C | | | | 380 V 400 V | I _e | Α | 200 | | 415 V | I _e | A | 200 | | AC3 | C | | | | 380 V 400 V | l _e | Α | 200 | | 415 V | I _e | A | 200 | | 660 V 690 V | l _e | A | 200 | | Lifespan, mechanical(of which max. 50 % trip by shunt/undervoltage release) | Operations | | 20000 | | choopen, moonumoulor which max. 30 % trip by small undervoltage release) | Operations. | | 2000 | | fespan, electrical | | | | |--|------------|-----------------|---| | AC-1 | | | | | 400 V 50/60 Hz | Operations | | 10000 | | 415 V 50/60 Hz | Operations | | 7500 | | Max. operating frequency | | 0ps/h | 120 | | otal downtime in a short-circuit | | ms | < 10 | | erminal capacity | | | | | tandard equipment | | | Screw connection | | ptional accessories | | | Box terminal Tunnel terminal connection on rear | | ound copper conductor | | | | | Box terminal | | | | | Solid | | mm ² | 1 x (10 - 16)
2 x (6 - 16) | | Stranded | | mm ² | 1 x (25 - 185)
2 x (25-70) | | Tunnel terminal | | | | | Solid | | mm^2 | 1 x 16 | | Stranded | | mm ² | | | Stranded | | mm ² | 1 x (25 - 185) | | Bolt terminal and rear-side connection | | | | | Direct on the switch | | | | | Solid | | mm ² | 1 x (10 - 16) | | | | 111111 | 2 x (6 - 16) | | Stranded | | mm ² | 1 x (25 - 185)
2 x (25 - 70) | | Il conductors, Cu cable | | | | | Solid | | mm ² | 1 x 16 | | Stranded | | mm^2 | | | Stranded | | mm^2 | 1 x (25 - 185) ²⁾ | | | | | ²⁾ Up to 240 mm² can be connected depending on the cable manufacturer. | | Bolt terminal and rear-side connection | | | | | Flat copper strip, with holes | min. | mm | 2 x 16 x 0.8 | | Flat copper strip, with holes | max. | mm | 10 x 24 x 0.8 | | u strip (number of segments x width x segment thickness) | | | | | Box terminal | | | | | | min. | mm | 2 x 9 x 0.8 | | | max. | mm | 10 x 16 x 0.8
(2x) 8 x 15.5 x 0,8 | | Bolt terminal and rear-side connection | | | | | Flat copper strip, with holes | min. | mm | 2 x 16 x 0.8 | | Flat copper strip, with holes | max. | mm | 10 x 24 x 0.8 | | opper busbar (width x thickness) | mm | | | | Bolt terminal and rear-side connection | | | | | Screw connection | | | M8 | | Direct on the switch | | | | | | min. | mm | 16 x 5 | | | max. | mm | 24 x 8 | | control cables | | | | | | | mm ² | 1 x (0.75 - 2.5)
2 x (0.75 - 1.5) | | | | | 1. 1. 1. 1. 1. | ## Design verification as per IEC/EN 61439 | Technical data for design verification | | | | |--|----|---|-----| | Rated operational current for specified heat dissipation | In | Α | 200 | | Equipment heat dissipation, current-dependent | P_{vid} | W | 48 | |---|-----------|----|--| | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 70 | | IEC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects $$ | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.6 Incorporation of switching devices and components | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | | | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | | | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | | | 10.9.2 Power-frequency electric strength | | | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | | | Is the panel builder's responsibility. | | 10.9.4 Testing of enclosures made of insulating material | | | Is the panel builder's responsibility. | | 10.10 Temperature rise | | | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | | | Is the panel builder's responsibility. The specifications for the switch
gear must be observed. $\label{eq:constraint}$ | | 10.12 Electromagnetic compatibility | | | Is the panel builder's responsibility. The specifications for the switch
gear must be observed. $\label{eq:constraint}$ | | 10.13 Mechanical function | | | The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | #### **Technical data ETIM 6.0** Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation prot. (EC000228) Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss8.1-27-37-04-09 [AJZ716010]) | protection (ecressos.1-27-57-04-05 (A32/10010J) | | 200 | |---|----|--| | Rated permanent current lu | А | 200 | | Rated voltage | V | 440 - 440 | | Rated short-circuit breaking capacity Icu at 400 V, 50 Hz | kA | 25 | | Overload release current setting | Α | 160 - 200 | | Adjustment range short-term delayed short-circuit release | Α | 0 - 0 | | Adjustment range undelayed short-circuit release | Α | 1200 - 2000 | | Integrated earth fault protection | | No | | Type of electrical connection of main circuit | | Screw connection | | Device construction | | Built-in device fixed built-in technique | | Suitable for DIN rail (top hat rail) mounting | | No | | DIN rail (top hat rail) mounting optional | | Yes | | Number of auxiliary contacts as normally closed contact | | 0 | | Number of auxiliary contacts as normally open contact | | 0 | | Number of auxiliary contacts as change-over contact | | 0 | | Switched-off indicator available | | No | | With under voltage release | | No | | Number of poles | | 4 | | Position of connection for main current circuit | | Front side | | Type of control element | | Rocker lever | | Complete device with protection unit | | Yes | | Motor drive integrated | | No | #### **Characteristics** ## **Dimensions** # Additional product information (links) | IL01206006Z (AWA1230-1916) Circuit-Breaker, basic unit | | | | | | |--|--|--|--|--|--| | IL01206006Z (AWA1230-1916) Circuit-Breaker, basic unit | eaker, ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/IL01206006Z2015_11.pdf | | | | | | Weight | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.171 | | | | | | Temperature dependency, Derating | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.172 | | | | | | Effective power loss | http://ecat.moeller.net/flip-cat/?edition=HPLEN&startpage=17.174 | | | | | | CurveSelect characteristics program | http://www.eaton.eu/DE/Europe/Electrical/CustomerSupport/ConfigurationTools/CharacteristicsProgram/index.htm | | | | |