Contactor, 3p, 150HP/600VAC, SEMI F47 Part no. DILMF150(RAC240) Article no. 104485 Catalog No. XTCE150G00B-F47 **Delivery program** | Delivery program | | | | |---|-----------------|----|--| | Product range | | | Contactors | | Application | | | Contactors for Semiconductor Industries acc. to SEMI F47 | | Subrange | | | Contactors up to 150 A with electronic actuation | | Utilization category | | | AC-1: Non-inductive or slightly inductive loads, resistance furnaces NAC-3: Normal AC induction motors: starting, switch off during running AC-4: Normal AC induction motors: starting, plugging, reversing, inching | | | | | IE3 ✓ | | Notes | | | Also suitable for motors with efficiency class IE3. IE3-ready devices are identified by the logo on their packaging. | | Connection technique | | | Screw terminals | | Description | | | Contactors suitable for semi-conductor industry according to SEMI F47. Contactors hum-free, suitable for building services automation. Operating mechanism adjustable from 50 Hz to 400 Hz. | | Number of poles | | | 3 pole | | Rated operational current | | | | | AC-3 | | | | | 380 V 400 V | I _e | Α | 150 | | AC-1 | | | | | Conventional free air thermal current, 3 pole, 50 - 60 Hz | | | | | Open | | | | | at 40 °C | $I_{th} = I_e$ | Α | 190 | | enclosed | I _{th} | Α | 144 | | Conventional free air thermal current, 1 pole | | | | | open | I _{th} | Α | 400 | | enclosed | I _{th} | Α | 360 | | Max. rating for three-phase motors, 50 - 60 Hz | | | | | AC-3 | | | | | 220 V 230 V | Р | kW | 48 | | 380 V 400 V | Р | kW | 75 | | 660 V 690 V | Р | kW | 96 | | AC-4 | | | | | 220 V 230 V | Р | kW | 20 | | 380 V 400 V | Р | kW | 33 | | 660 V 690 V | Р | kW | 48 | | Contact sequence | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | Instructions | | | Contacts to EN 50012. built-in suppressor circuit' | #### Technical data General | AC - Rated operational current. 3 pole, 50 - 50 Mz Open at 40 °C at 50 °C at 50 °C at 50 °C at 60 °C at 60 °C at 60 °C an | Mounting position | | | | |---|---|---------------------------------|-----|---| | ACC ACC | Mounting position | | | | | ACC ACT Period parametered correct Conventional free air rhemati correct, 5 pole, 50 - 50 Hz Quen 4 x 50 °C | | | | /% % | | AE-I Pated operational current (| | | | '/ | | AE-I Pated operational current (| | | | \ | | AE-I Pated operational current (| | | | | | AE-I Pated operational current (| | | | | | Part of spendsonal current Conventions fire air shemal current, 3 pole, 50 - 00 Hz | | | | | | Dispose | | | | | | 1 | | | | | | 140°C | Conventional free air thermal current, 3 pole, 50 - 60 Hz | | | | | ### 155 °C | Open | | | | | In an Closed | at 40 °C | I _{th} =I _e | Α | 190 | | A | at 50 °C | I _{th} =I _e | Α | 180 | | Conventional free air thermal current. I pole | at 60 °C | | Δ | 160 | | Cerverrional five air thermal current, tools open Is | | | | | | | | ¹th | А | 144 | | AC-3 Reted operational current Quen.3-police 50 - 60 Hz 220 V 230 V | | | | | | AC-3 Rated operational current 「Dyen、3-pole: 50 - 90 Hz 「Z20 V Z30 V | open | I _{th} | Α | 400 | | | enclosed | I _{th} | Α | 360 | | Open,3-pole: 50 - 60 Hz | AC-3 | | | | | 220 V 230 V | Rated operational current | | | | | 220 V 230 V | | | | | | 240 V | | lo | Α | 150 | | 150 | | | | | | 415 V | | | | | | 440V | 380 V 400 V | le | Α | 150 | | 10 10 10 10 10 10 10 10 | 415 V | I _e | Α | 150 | | | 440V | Ie | Α | 150 | | Motor rating P kWh 220 V 230 V P kW 48 240V P kW 52 380 V 400 V P kW 75 415 V P kW 91 440 V P kW 95 500 V P kW 100 660 V 690 V P kW 100 AC-4 P W 100 220 V 230 V I ₀ A 65 240 V I ₀ A 65 415 V I ₀ A 65 440 V I ₀ A 65 440 V I ₀ A 65 500 V I ₀ A 65 600 V 69 V I ₀ A 65 Motor rating P KW 20 200 V 23 V P KW 20 240 V P KW 23 380 V 400 V P KW | 500 V | I _e | Α | 150 | | Motor rating P kWh 220 V 230 V P kW 48 240V P kW 52 380 V 400 V P kW 75 415 V P kW 91 440 V P kW 95 500 V P kW 100 660 V 690 V P kW 100 AC-4 P W 100 220 V 230 V I ₀ A 65 240 V I ₀ A 65 415 V I ₀ A 65 440 V I ₀ A 65 440 V I ₀ A 65 500 V I ₀ A 65 600 V 69 V I ₀ A 65 Motor rating P KW 20 200 V 23 V P KW 20 240 V P KW 23 380 V 400 V P KW | 660 V 690 V | l _o | Α | 100 | | 220 \ \ \ 230 \ \ \ 2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | | | | | | 240V | | | | 40 | | 380 \ \ 400 \ \ | | | | | | 415 \ | | | | | | AU | | | | | | FOO | | | | | | A60 V 690 V P kW 96 AC-4 P kW 96 Open, 3-pole: 50 – 60 Hz V V 1 220 V 230 V Ie A 65 240 V Ie A 65 380 V 400 V Ie A 65 415 V Ie A 65 440 V Ie A 65 500 V Ie A 65 Motor rating Ie A 50 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 40 | 440 V | Р | kW | 95 | | AC-4 Open,3-pole:50-60 Hz 220 V 230 V le A 65 240 V 380 V 400 V le A 65 415 V le A 65 440 V le A 65 500 V le A 65 660 V 690 V le A 65 Motor rating Motor rating P | 500 V | P | kW | 110 | | Open, 3-pole: 50 – 60 Hz Ie A 65 220 V 230 V Ie A 65 240 V Ie A 65 380 V 400 V Ie A 65 415 V Ie A 65 440 V Ie A 65 500 V Ie A 65 660 V 690 V Ie A 50 Motor rating P kWh V 220 V 230 V P kW 20 240 V P kW 33 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | 660 V 690 V | P | kW | 96 | | 220 V 230 V Ie A 65 240 V Ie A 65 380 V 400 V Ie A 65 415 V Ie A 65 440 V Ie A 65 500 V Ie A 65 660 V 690 V Ie A 50 Motor rating P kWh 20 220 V 230 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | AC-4 | | | | | 240 V | Open, 3-pole: 50 – 60 Hz | | | | | 240 V I _e A 65 380 V 400 V I _e A 65 415 V I _e A 65 440 V I _e A 65 500 V I _e A 65 660 V 690 V I _e A 50 Motor rating P kWh 20 220 V 230 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | 220 V 230 V | I _e | Α | 65 | | | 240 V | | Α | 65 | | 415 V Ie A 65 440 V Ie A 65 500 V Ie A 65 660 V 690 V Ie A 50 Motor rating P kWh V 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | | | | | | 440 V 1e A 65 500 V 1e A 65 660 V 690 V 1e A 50 Motor rating P kWh V 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | | | | | | 500 V Ie A 65 660 V 690 V Ie A 50 Motor rating P kWh C 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | | | А | | | 660 V 690 V Ie A 50 Motor rating P kWh Wh 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | 440 V | l _e | Α | | | Motor rating P kWh 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | 500 V | I _e | Α | 65 | | 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | 660 V 690 V | Ie | Α | 50 | | 220 V 230 V P kW 20 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | Motor rating | P | kWh | | | 240 V P kW 22 380 V 400 V P kW 33 415 V P kW 39 440 V P kW 41 | | P | | 20 | | 380 V 400 V P kW 33
415 V P kW 39
440 V P kW 41 | | | | | | 415 V P kW 39
440 V P kW 41 | | | | | | 440 V P kW 41 | | | | | | | | | | | | 500 V P kW 47 | | | | | | | 500 V | Р | kW | 47 | | 660 V 690 V | P | kW | 48 | |---|----------|------------------|-------------------------| | Current heat loss | | | | | 3-pole at I _{th} | | W | 46.1 | | Current heat loss at I _e to AC-3/400 V | | W | 40.5 | | Magnet systems | | | | | Voltage tolerance | | | | | AC operated | Pick-up | x U _c | 0.8 - 1.15 | | Drop-out voltage AC operated | Drop-out | x U _c | 0.2 - 0.5 | | Power consumption of the coil in a cold state and 1.0 x $\rm U_{\rm C}$ | | | | | Electronic actuation | Pick-up | VA | 180 | | Electronic actuation | Sealing | VA | 3.1 | | Electronic actuation | Sealing | W | 2.1 | | Duty factor | | % DF | 100 | | Operating times | | | | | Closing delay | | ms | 40 | | Opening delay | | ms | 40 | | -suitable according to | | | SEMI F47 | | Electromagnetic compatibility (EMC) | | | | | Emitted interference | | | according to EN 60947-1 | | Interference immunity | | | according to EN 60947-1 | | Additional technical data | | | | | like the contactar | DIL | | M150 | # **Design verification as per IEC/EN 61439** | Design vernication as per 1EG/EN 01433 | | | | |--|-------------------|----|--| | Technical data for design verification | | | | | Rated operational current for specified heat dissipation | In | Α | 150 | | Heat dissipation per pole, current-dependent | P _{vid} | W | 10.7 | | Equipment heat dissipation, current-dependent | P _{vid} | W | 32.1 | | Static heat dissipation, non-current-dependent | P _{vs} | W | 2.3 | | Heat dissipation capacity | P _{diss} | W | 0 | | Operating ambient temperature min. | | °C | -25 | | Operating ambient temperature max. | | °C | 60 | | EC/EN 61439 design verification | | | | | 10.2 Strength of materials and parts | | | | | 10.2.2 Corrosion resistance | | | Meets the product standard's requirements. | | 10.2.3.1 Verification of thermal stability of enclosures | | | Meets the product standard's requirements. | | 10.2.3.2 Verification of resistance of insulating materials to normal heat | | | Meets the product standard's requirements. | | 10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects $ \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left($ | | | Meets the product standard's requirements. | | 10.2.4 Resistance to ultra-violet (UV) radiation | | | Meets the product standard's requirements. | | 10.2.5 Lifting | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.6 Mechanical impact | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.2.7 Inscriptions | | | Meets the product standard's requirements. | | 10.3 Degree of protection of ASSEMBLIES | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.4 Clearances and creepage distances | | | Meets the product standard's requirements. | | 10.5 Protection against electric shock | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.6 Incorporation of switching devices and components | | | Does not apply, since the entire switchgear needs to be evaluated. | | 10.7 Internal electrical circuits and connections | | | Is the panel builder's responsibility. | | 10.8 Connections for external conductors | | | Is the panel builder's responsibility. | | 10.9 Insulation properties | | | | | 10.9.2 Power-frequency electric strength | | | Is the panel builder's responsibility. | | 10.9.3 Impulse withstand voltage | | | Is the panel builder's responsibility. | | 10.9.4 Testing of enclosures made of insulating material | | | Is the panel builder's responsibility. | | 10.10 Temperature rise | | | The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices. | | 10.11 Short-circuit rating | | | Is the panel builder's responsibility. The specifications for the switchgear must observed. | | | | | | | 10.12 Electromagnetic compatibility | Is the panel builder's responsibility. The specifications for the switchgear must be observed. | |-------------------------------------|--| | 10.13 Mechanical function | The device meets the requirements, provided the information in the instruction leaflet (IL) is observed. | ### **Technical data ETIM 6.0** | Low-voltage industrial components (EG000017) / Power contactor, AC switching (EC000066) | | | | | |--|--|----|------------------|--| | Electric engineering, automation, process control engineering / Low-voltage switch technology / Contactor (LV) / Power contactor, AC switching (ecl@ss8.1-27-37-10-03 [AAB718012]) | | | | | | Rated control supply voltage Us at AC 50HZ | | V | 190 - 240 | | | Rated control supply voltage Us at AC 60HZ | | V | 190 - 240 | | | Rated control supply voltage Us at DC | | V | 0 - 0 | | | Voltage type for actuating | | | AC | | | Rated operation current le at AC-1, 400 V | | Α | 160 | | | Rated operation current le at AC-3, 400 V | | Α | 150 | | | Rated operation power at AC-3, 400 V | | kW | 75 | | | Rated operation current le at AC-4, 400 V | | Α | 65 | | | Rated operation power le at AC-4, 400 V | | kW | 33 | | | Modular version | | | No | | | Number of auxiliary contacts as normally open contact | | | 0 | | | Number of auxiliary contacts as normally closed contact | | | 0 | | | Type of electrical connection of main circuit | | | Screw connection | | | Number of normally closed contacts as main contact | | | 0 | | | Number of main contacts as normally open contact | | | 3 | | ## **Approvals** | •• | | |--------------------------------------|---| | Product Standards | IEC/EN 60947-4-1; UL 508; CSA-C22.2 No. 14-05; CE marking | | UL File No. | E29096 | | UL Category Control No. | NLDX | | CSA File No. | 012528 | | CSA Class No. | 2411-03, 3211-04 | | North America Certification | UL listed, CSA certified | | Specially designed for North America | No | #### **Characteristics** Switching conditions for non-motor consumers, 3 pole, 4 pole Operating characteristics Non inductive and slightly inductive loads Electrical characteristics Switch on: 1 x rated operational current Switch off: 1 x rated operational current Utilization category 100 % AC-1 Typical examples of application Electric heat # **Dimensions** # Additional product information (links) | IL03407039Z (AWA2100-2286) Contactors ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/IL03407039Z2010_10.pdf Switchgear of Power Factor Correction Systems X-Start - Modern Switching Installations Efficiently Fitted and Wired Securely Mirror Contacts for Highly-Reliable Information Relating to Safety-Related Control Functions Effect of the Cabel Capacitance of Long Control Cables on the Actuation of Contactors Motor starters and "Special Purpose Ratings" http://www.moeller.net/binary/ver_techpapers/ver949en.pdf http://www.moeller.net/binary/ver_techpapers/ver949en.pdf http://www.moeller.net/binary/ver_techpapers/ver949en.pdf http://www.moeller.net/binary/ver_techpapers/ver949en.pdf | | | | |--|---------------------------------------|---|--| | Switchgear of Power Factor Correction Systems Nttp://www.moeller.net/binary/ver_techpapers/ver934en.pdf X-Start - Modern Switching Installations Efficiently Fitted and Wired Securely Mirror Contacts for Highly-Reliable Information Relating to Safety-Related Control Functions Effect of the Cabel Capacitance of Long Control Cables on the Actuation of Contactors http://www.moeller.net/binary/ver_techpapers/ver949en.pdf http://www.moeller.net/binary/ver_techpapers/ver949en.pdf | IL03407039Z (AWA2100-2286) Contactors | | | | Systems X-Start - Modern Switching Installations Efficiently Fitted and Wired Securely Mirror Contacts for Highly-Reliable Information Relating to Safety-Related Control Functions Effect of the Cabel Capacitance of Long Control Cables on the Actuation of Contactors http://www.moeller.net/binary/ver_techpapers/ver949en.pdf | IL03407039Z (AWA2100-2286) Contactors | ftp://ftp.moeller.net/DOCUMENTATION/AWA_INSTRUCTIONS/IL03407039Z2010_10.pdf | | | Efficiently Fitted and Wired Securely Mirror Contacts for Highly-Reliable Information Relating to Safety-Related Control Functions Effect of the Cabel Capacitance of Long Control Cables on the Actuation of Contactors Http://www.moeller.net/binary/ver_techpapers/ver949en.pdf Cables on the Actuation of Contactors | _ | http://www.moeller.net/binary/ver_techpapers/ver934en.pdf | | | Relating to Safety-Related Control Functions Effect of the Cabel Capacitance of Long Control http://www.moeller.net/binary/ver_techpapers/ver949en.pdf Cables on the Actuation of Contactors | · · | http://www.moeller.net/binary/ver_techpapers/ver938en.pdf | | | Cables on the Actuation of Contactors | | http://www.moeller.net/binary/ver_techpapers/ver944en.pdf | | | Motor starters and "Special Purpose Ratings" http://www.moeller.net/binary/ver_techpapers/ver953en.pdf | , | http://www.moeller.net/binary/ver_techpapers/ver949en.pdf | | | for the North American market | | http://www.moeller.net/binary/ver_techpapers/ver953en.pdf | | | Switchgear for Luminaires http://www.moeller.net/binary/ver_techpapers/ver955en.pdf | Switchgear for Luminaires | http://www.moeller.net/binary/ver_techpapers/ver955en.pdf | | | Standard Compliant and Functionally Safe
Engineering Design with Mechanical Auxiliary
Contacts | http://www.moeller.net/binary/ver_techpapers/ver956en.pdf | |--|---| | The Interaction of Contactors with PLCs | http://www.moeller.net/binary/ver_techpapers/ver957en.pdf | | Busbar Component Adapters for modern
Industrial control panels | http://www.moeller.net/binary/ver_techpapers/ver960en.pdf |