

Circuit-breaker, 4 pole, 1250 A, 50 kA, Selective operation, IEC, Fixed

Powering Business Worldwide*

Part no. IZMX16N4-V12F-1 Article no. 183552

Delivery program

Donvoi y program			
Product range			Air circuit-breakers/switch-disconnectors
Product range			Open circuit-breakers
Current Range			Up to 4000 A
Protective function			Selective operation
Installation type			Fixed
			Main terminals must be separately ordered.
Construction size			IZMX16
Release system			Electronic release
Standard/Approval			IEC
Number of poles			4 pole
Degree of Protection			IP31 with door seals, IP55 with protective cover
			suitable for zone selectivity optionally fittable by user with comprehensive accessories
Rated current = rated uninterrupted current	$I_n = I_u$	Α	1250
up to 440 V 50/60 Hz	I _{cu}	kA	50
up to 440 V 50/60 Hz	I _{cs}	kA	50
Overload release, min.	I _r	Α	500
Overload release, max.	I _r	Α	1250
Non-delayed	$I_i = I_n \times \dots$		2 - 15, OFF
I>			
Delayed	$I_{sd} = I_r \times \dots$		1,5 - 10
XI≥			

Technical data

General

General			
Standards			IEC/EN 60947
Ambient temperature			
Storage	9	°C	-20 - +70
Ambient temperature		°C	-20 - +70
Mounting position			30° 30°
			30° 30°
Utilization category			В
Degree of Protection			IP31 with door seals, IP55 with protective cover
Direction of incoming supply			as required
Main conducting paths			
Rated current = rated uninterrupted current	$I_n = I_u$	Α	1250

Rated uninterrupted current at 50 °C

Rated uninterrupted current at 60 °C

Α

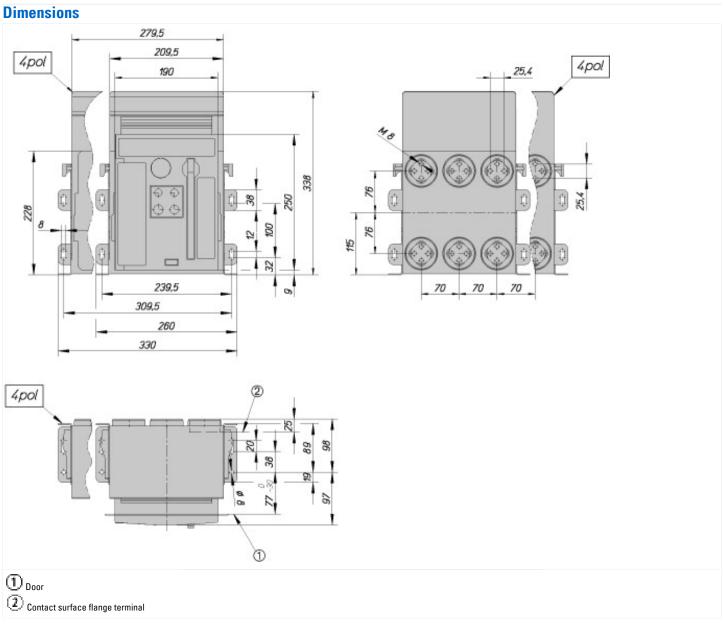
1250 1250

 $I_{\rm u}$

I	A V AC V AC kA kA kA kA kA	1250 12000 690 0 0 III/3 1000 105 88 42
Ue IIT IIT Ui Icm Icm Icm Icu Icu Icu Icu	V AC kA kA V kA kA kA kA	690 0 0 III/3 1000 105 88 42
I _{IT} U _i U _{cm} I _{cm} I _{cm} I _{cm} I _{cm} I _{cu}	kA kA V kA kA kA kA	0 0 III/3 1000 105 88 42
I _{IT} Ui L _{cm} L _{cm} L _{cm} L _{cm} L _{cu}	kA V kA kA kA kA	0 III/3 1000 105 88 42
U _i I _{cm} I _{cm} I _{cm} I _{cm} I _{cm} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu}	V kA kA kA kA	III/3 1000 105 88 42
I _{cm} I _{cm} I _{cm} I _{cm} I _{cw} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu}	kA kA kA	1000 105 88 42
I _{cm} I _{cm} I _{cm} I _{cm} I _{cw} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu}	kA kA kA	105 88 42
l _{cm} l _{cw} l _{cu} l _{cu} l _{cu} l _{cu} l _{cu}	kA kA kA	88 42 85
l _{cm} l _{cw} l _{cu} l _{cu} l _{cu} l _{cu} l _{cu}	kA kA kA	88 42 85
I _{cw} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu} I _{cu}	kA kA kA	88 42 85
I _{cw} I _{cn} I _{cu} I _{cu} I _{cu} I _{cu}	kA kA kA	42 85
I _{cu} I _{cu} I _{cu} I _{cu}	kA kA	85
I _{cu} I _{cu} I _{cu} I _{cu}	kA kA	85
I _{cu} I _{cu} I _{cu}	kA	
I _{cu} I _{cu}	kA	
I _{cu} I _{cu}	kA	
I _{cu}		50
I _{cu}	kA	
I _{cs}		42
	kA	50
'CS	kA	50
	kA	42
I _{cs}	NA.	72
	me	30
		30
		50
	0	
	ms	27
	S	
Switching cycles (ON/ OFF)		12500
Switching cycles (ON/ OFF)		25000.
Switching cycles (ON/ OFF)		10000
Switching cycles (ON/ OFF)		20000.
Operations/h		60
	W	132
	kg	24
	mm	2 x 5 x 80
		These are values used in separate switchgear. The actual values will depend on the temperature around the circuit-breaker, which is influenced by the ambient temperature, the degree of protection (IP), the mounting height, the partitions, and any external ventilation. Depending on the specific switchgear design, this may result in derating, which can then be compensated for by increasing the cross-sectional area. Temperature rise tests in the specific switchgear can provide specific and detailed information.
	cycles (ON/ OFF) Switching cycles (ON/ OFF) Switching cycles (ON/ OFF) Switching cycles (ON/ OFF)	S Switching cycles (ON/ OFF) Switching cycles (ON/ OFF) Switching cycles (ON/ OFF) Switching cycles (ON/ OFF) Operations/h W kg

Design verification as per IEC/EN 61439

· · · · · · · · · · · · · · · · · · ·			
Technical data for design verification			
Rated operational current for specified heat dissipation	In	Α	1250
Equipment heat dissipation, current-dependent	P _{vid}	W	132
Operating ambient temperature min.		°C	-20
Operating ambient temperature max.		°C	70
IEC/EN 61439 design verification			
10.2 Strength of materials and parts			
10.2.2 Corrosion resistance			Meets the product standard's requirements.
10.2.3.1 Verification of thermal stability of enclosures			Meets the product standard's requirements.
10.2.3.2 Verification of resistance of insulating materials to normal heat			Meets the product standard's requirements.
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects			Meets the product standard's requirements.
10.2.4 Resistance to ultra-violet (UV) radiation			Meets the product standard's requirements.
10.2.5 Lifting			Does not apply, since the entire switchgear needs to be evaluated.
10.2.6 Mechanical impact			Does not apply, since the entire switchgear needs to be evaluated.
10.2.7 Inscriptions			Meets the product standard's requirements.
10.3 Degree of protection of ASSEMBLIES			Does not apply, since the entire switchgear needs to be evaluated.
10.4 Clearances and creepage distances			Meets the product standard's requirements.
10.5 Protection against electric shock			Does not apply, since the entire switchgear needs to be evaluated.
10.6 Incorporation of switching devices and components			Does not apply, since the entire switchgear needs to be evaluated.
10.7 Internal electrical circuits and connections			Is the panel builder's responsibility.
10.8 Connections for external conductors			Is the panel builder's responsibility.
10.9 Insulation properties			
10.9.2 Power-frequency electric strength			Is the panel builder's responsibility.
10.9.3 Impulse withstand voltage			Is the panel builder's responsibility.
10.9.4 Testing of enclosures made of insulating material			Is the panel builder's responsibility.
10.10 Temperature rise			The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.
10.11 Short-circuit rating			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.12 Electromagnetic compatibility			Is the panel builder's responsibility. The specifications for the switchgear must be observed.
10.13 Mechanical function			The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.


Technical data ETIM 6.0

Low-voltage industrial components (EG000017) / Power circuit-breaker for trafo/generator/installation prot. (EC000228)

Electric engineering, automation, process control engineering / Low-voltage switch technology / Circuit breaker (LV < 1 kV) / Circuit breaker for power transformer, generator and system protection (ecl@ss8.1-27-37-04-09 [AJZ716010])

· · · · · · · · · · · · · · · · · · ·		
Rated permanent current lu	Α	1250
Rated voltage	V	690 - 690
Rated short-circuit breaking capacity Icu at 400 V, 50 Hz	kA	50
Overload release current setting	Α	625 - 1250
Adjustment range short-term delayed short-circuit release	Α	2500 - 12500
Adjustment range undelayed short-circuit release	Α	2500 - 15000
Integrated earth fault protection		No
Type of electrical connection of main circuit		Rail connection
Device construction		Built-in device fixed built-in technique
Suitable for DIN rail (top hat rail) mounting		No
DIN rail (top hat rail) mounting optional		No
Number of auxiliary contacts as normally closed contact		0
Number of auxiliary contacts as normally open contact		0
Number of auxiliary contacts as change-over contact		2

Switched-off indicator available	Yes
With under voltage release	No
Number of poles	4
Position of connection for main current circuit	Back side
Type of control element	Push button
Complete device with protection unit	Yes
Motor drive integrated	No
Motor drive optional	Yes
Degree of protection (IP)	IP31

